ISOORIENTIN 7,3'-DIMETHYL ETHER, A NEW C-GLYCOSYLFLAVONE FROM ACHILLEA CRETICA

KARIN VALANT*, ELISABETH BESSONT and JEAN CHOPINT

*Institut für Botanik der Universität, A-1030 Wien, Rennweg 14, Austria; † Laboratoire de Chimie biologique, Université Claude Bernard (Lyon I), 69621 Villeurbanne, France

(Received 8 June 1979)

Key Word Index—Achillea cretica; Anthemideae; Compositae; C-glycosylflavone; isoorientin 7,3'-di-O-methyl ether.

Within the genus Achillea, the accumulation of Cglycosylflavones is an important chemotaxonomic character [1, 2]. A. cretica L., a member of section Santolinoidea, is characterized by the predominance of 6-C-glucosylflavones: isoorientin, isoorientin 7-Omethyl ether (swertiajaponin), isovitexin 7-O-methyl ether (swertisin), besides some di-C-glycosylflavones in the leaf extract [1]. A new C-glycosylflavone was obtained as a byproduct during the isolation procedure. Its UV spectrum (243, 254 sh, 271, 345 nm) was of the luteolin type; the AlCl₃ and AlCl₃+HCl shifts showed the presence of free 5-OH and the absence of free o-dihydroxy groups; the large bathochromic and hyperchromic effects of NaOMe on band I (406 nm) characterized a free 4'-OH group confirmed by NaOAc (408 nm), but the lack of any shift of band II with the latter showed substitution at the 7-OH group [3]. The chromatographic properties of the compound and co-occurrence with isoorientin and isovitexin 7-O-methyl ethers in the same extract suggested a 7,3'di-O-methyl substitution, which was confirmed by the MS of the perdeuteriomethyl (PDM) derivative. The molecular peak m/e 578 and the base peak (M-184) agreed with a PDM C-hexosyl di-O-methylluteolin and the M-18 and M-34 peaks showed the C-hexosyl group to be in the 6-position [4]. The β -Dglucopyranosyl structure of the C-hexosyl group was deduced from TLC comparison of the permethyl (PM) derivative of the new compound with authentic PM isoorientin which showed complete identity in conditions where PM C- β -D-glucopyranosides and C- β -Dgalactopyranosides are separated [5].

Thus the compound is isoorientin 7,3'-di-O-methyl ether $(6-C-\beta-D-glucopyranosyl-5,4'-dihydroxy-7,3'dimethoxyflavone)$, an as yet undescribed C-glycosylflavone. Chromatographic surveys showed this new compound to be of restricted distribution within the

genus Achillea and the available amount precluded further characterization.

EXPERIMENTAL

Dried leaf tissue from A. cretica (collected in Crete from natural habitat) was thoroughly extracted with 70% EtOH and the aq. residue was chromatographed on a Whatman CF 11 cellulose powder column eluted with H₂O. The glycosidic fractions were purified by preparative PC (Whatman 3MM) in BAW (4:1:5), CHCl₃-HOAc (1:1, water saturated) (CAW) and 15% HOAc. UV spectra were recorded using standard procedures [3], MS 70 eV. Perdeuteriomethylation and permethylation were carried out using the method previously described [4]. The voucher specimen is deposited at the Herbarium WU (Institute for Botany, University of Vienna).

UV $\lambda_{\rm max}$ nm: 345, 271, 254 sh, 243 (MeOH); 385, 367 sh, 297 sh, 280, 266 sh (AlCl₃); 380 sh, 356, 295 sh, 279, 260 sh (AlCl₃+HCl); 406, 300 sh, 268 (NaOMe); 408, 365 sh, 268, 255 sh (NaOAc); 347, 270, 255 sh, 242 sh (NaOAc+H₃BO₃). TLC $R_f \times 100$, Cellulose: 59 (BAW), 82 (CAW), 36 (15% HOAc). Si gel, permethyl ether (CHCl₃-EtOAc-Me₂CO, 5:4:1): 0.28. MS m/e (%), PDM ether: M⁺ 578 (18), M-18 (13), M-34 (46), M-52 (9), M-109 (13), M-170 (13), M-173 (13), M-184 (100), M-201 (22), 347 (13), 203 (22), 185 (24), 168 (18).

REFERENCES

- 1. Valant, K. (1978) Naturwissenschaften 65, 437.
- Valant, K., Besson, E. and Chopin, J. (1978) Phytochemistry 17, 2136.
- Mabry, T. J., Markham, K. R. and Thomas, M. B. (1970)
 The Systematic Identification of Flavonoids. Springer,
 Berlin
- 4. Bouillant, M. L., Favre-Bonvin, J. and Chopin, J. (1975) *Phytochemistry* 14, 2267.
- 5. Bouillant, M. L. (1976) Doctorate Thesis, Lyon No. 7652.